Riemann – Cartan geometry of nonlinear disclination mechanics
نویسنده
چکیده
In the continuous theory of defects in nonlinear elastic solids, it is known that a distribution of disclinations leads, in general, to a non-trivial residual stress field. To study this problem, we consider the particular case of determining the residual stress field of a cylindrically symmetric distribution of parallel wedge disclinations. We first use the tools of differential geometry to construct a Riemannian material manifold in which the body is stress-free. This manifold is metric compatible, has zero torsion, but has non-vanishing curvature. The problem then reduces to embedding this manifold in Euclidean 3-space following the procedure of a classical nonlinear elastic problem. We show that this embedding can be elegantly accomplished by using Cartan’s method of moving frames and compute explicitly the residual stress field for various distributions in the case of a neo-Hookean material.
منابع مشابه
Nonholonomic Algebroids, Finsler Geometry, and Lagrange–Hamilton Spaces
We elaborate an unified geometric approach to classical mechanics, Riemann–Finsler spaces and gravity theories on Lie algebroids provided with nonlinear connection (N–connection) structure. There are investigated the conditions when the fundamental geometric objects like the anchor, metric and linear connection, almost sympletic and related almost complex structures may be canonically defined b...
متن کاملNonholonomic Clifford Structures and Noncommutative Riemann–Finsler Geometry
We survey the geometry of Lagrange and Finsler spaces and discuss the issues related to the definition of curvature of nonholonomic manifolds enabled with nonlinear connection structure. It is proved that any commutative Riemannian geometry (in general, any Riemann– Cartan space) defined by a generic off–diagonal metric structure (with an additional affine connection possessing nontrivial torsi...
متن کاملQuantized Matter in a De Sitter Gauge Theorywith Classical Metric and Axial Torsion
The dualism between classical matter and geometry is extended to include elementary hadronic matter described in quantized form in terms of a gauge theory based on the group SO(4; 1) containing a built-in fundamental length parameter R of geometric origin of the order of a Fermi. Quantized matter at subnuclear distances is described in terms of generalized quantum mechanical wave functions ((rs...
متن کاملGeometry, and Nonsymmetric Metrics on Nonholonomic Manifolds
We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off–diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...
متن کاملEinstein Gravity , Lagrange – Finsler Geometry , and Nonsymmetric Metrics
We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...
متن کامل